

The neutrino observatory LENA

Jürgen Winter Lehrstuhl für experimentelle Astroteilchenphysik E15 juergen.winter@ph.tum.de

- LENA design
- PMTs and Readout Electronics
- Liquid Scintillator
- Physics goals: from low to high-E physics
- Summary

LENA Design

Cavern

Height 115 m Diameter 50 m

- Shielding of cosmic rays with 4000 m.w.e.
- Egg-shaped for increased stability

Steel Tank

Height 100 m Diameter 30 m

~65,000 PMTs (8") with Winston Cones (1.75 x)

Nylon Vessel

between buffer and target volume

LENA Design

Cavern

Muon Veto

plastic scintillator panels

Heigh Diam

Detector properties

terenkov .000

packground

- Shielding rays with
 - Good Energy Resolution
 - ~ 200 photoelectrons per MeV
- Egg-sha increase
- **Low Detection Threshold**

Steel T

~200 keV (due to intrinsic ¹⁴C background)

Heid Diar **Excellent Background Reduction**

- coincidence signals (inverse beta decay)

- pulse shape discrimination

~65,000 with Win (1.75 x)

- Radiopurity
 - → experience from Borexino

 Self-shielding monolithic detector shield its central volume against external backgrounds

Nylon V between

target volume

50 kt of organic liquid scintillator

ume

rganic liquid ternal

LAGUNA site study

Boulby, UK

Lombardi

LAGUNA site study (Large Apparatus for Grand Unification and Neutrino Astronomy)

- EU funded FP7 study
- 3 detectors, 7 locations

Possible LENA locations (>4 km.w.e)

- → Pyhäsalmi (FIN)
- → Fréjus (F)

Dedicated talks:

- → Site comparison: W. Trzaska
- → Geotechn. studies @ Pyhäsalmi: G. Nuijten

LENA tank design

Steel

- i. Conventional Steel Tank: well known technology, but expensive
- ii.Sandwich Steel Tank: cost effective, yet mechanically challenging

Concrete

- bigger tank due to internal radioactivity → more LS, bigger excavation
- Cheaper than steel and more stable
 - → in total not more expensive
- i. Sandwich Concrete Tank: well known technology, yet slow to build ii. Hollow Core Concrete Tank: mechanically strong, little known technology

Detector performance

Scintillator

- Decay Times
- Light Yield
- Attenuation length
- Scattering lenght
- Radiopurity

Photosensors

- Photo detection efficiency
- Spectral response
- Optical coverage
- Granularity

•

Electronics

- Dynamic Range
- Trigger
- Sampling

•

Monte Carlo simulations

Physics program and potential

Photosensors

- → See talk this afternoon
- Good energy resolution
 - ~30% optical coverage
 - 3000m² effective photosensitive area
 - Light yield ≥ 200 pe/MeV
- Good timing resolution

PMT Ø	# PMTs in ID		
	No light concentrators	Light concentrators (1.75)	
5"	329,300	188,200	
8"	110400	63,000	
10"	82,300	47,000	
20"	21,600	12,300	

PMT testing in Garching and Borexino test stand @LNGS

- → characteristics of possible PMTs
 - afterpulses
 - time jitter...
- collaborations with
 - MEMPHYS (PICS, PMm2), KM3Net
 - INFN Milano, LNGS, Tübingen
 - ETEL, Hamamatsu

PMTs are probably the only photo sensor type which can fulfill all requirement classes

Electronics

- PMTs as sensors
- Requirements
 - Large dynamic range: single p.e. few 100 p.e. per channel
 - ns timing (1-2 GS/s)
 - Zero dead time → sufficient onboard memory
- 2 solutions investigated
 - 1. FADC for all PMTs: expensive
 - Customised ASIC boards for small PMT arrays: investigated by Pmm2 group for MEMPHYS detector

Liquid Scintillator

→ Mixture of organic solvent + fluor (wavelength shifter)

Properties investigated in small scale experiments

- Light yield
- Attenuation length
- Scattering length
- Refraction index
- Gamma Quenching
- Proton Quenching
- Fluorescence Decay Constants
- Scintillation Spectra

→ input for LENA MC to investigate physics potential

Solvents:

- LAB
- PXE
- DIN, Tetradecane (non-scint.)

Fluor:

- · PPO
- PMP
- pTP
- bisMSB

Scintillator properties

Environmental issues

- radiopurity
- flammability
- toxity

Solvents	Wave	length shifters	Y [%]	n_1 [%]	$\tau_1 [\mathrm{ns}]$
	$1^{\rm st}$	2 nd	258		268 269
PXE +	2 g/ℓ PMP	-	79.1 ± 3.1	95.9 ± 0.02	4.15 ± 0.02
+	2 g/ℓ PPO	+ 20 mg/ℓ Bis-MSB	102.0 ± 3.3	85.3 ± 1.4	2.61 ± 0.05
LAB +	$2 g/\ell PMP$	-	83.9 ± 3.0	85.1 ± 0.9	8.53 ± 0.15
+	2 g/ℓ PPO	+ 20 mg/ℓ Bis-MSB	99.7 ± 3.2	77.7 ± 0.8	5.21 ± 0.005
DIN +	$1.5\mathrm{g}/\ell~\mathrm{PPO}$	<u> </u>	_	86.2 ± 0.2	6.95 ± 0.02

PXEu

- largest absorption length
- good light yield, timing
- good availability

LENA Physics goals overview

Low-Energy Neutrino Physics

- Galactic Supernova Neutrinos
- Diffuse SN Background Neutrinos
- Solar Neutrinos
- Geoneutrinos
- Short-baseline Neutrino Oscillations
- Neutrinos from DM annihilation

GeV Physics

- Nucleon Decay Search
- Long Baseline Neutrino Beams
- Atmospheric Neutrinos

Supernova Neutrinos

- → Neutrinos from a Galactic Core-Collapse SN
- → Neutrinos from Diffuse SN Background

SN physics

- Galactic SN v
 - high-statistic measurement
 - determine detailed 'light curves' and spectra for each flavour
 - Neutronization burst observation

- average \overline{v}_e spectrum, exclusion of extreme SN scenarios
- first observation

Neutrino properties

• Matter effects on neutrino oscillations in SN envelope (MSW, collective osc.) and Earth $\rightarrow \theta_{13}$, neutrino mass hierarchy

Galactic SN Neutrinos

- Core collapse SN
 - → neutronization (10ms)
 - v_e : ~40 from ve, ~90 from vp scattering
 - → accretion (100ms)
 - Largest spectral differences between flavours

- all flavours, thermal spectra
- Rate calculations assuming
 - M ~ 8 M_{solar} progenitor
 - 10 kpc distance
 - Luminsosity equipartition

Galactic SN Neutrinos

- Golden Channel: inverse beta decay $\geq 10,000$ events $\bar{v}_e + p \rightarrow n + e^+$
- Additional: elastic scattering off protons, electrons, and ¹²C (NC and CC)
 - → all flavours accessible!
 6 different reaction channels allowing for time-resolved flux measurement and spectroscopy

			Events for <e> values</e>		
Reaction	Туре	E _{thr}	12 MeV	14 MeV	16MeV
$\bar{v_e}$ +p \rightarrow n + e ⁺	СС	1.8 MeV	1.4 10 ⁴	1.6 104	1.9 104
$v+p \rightarrow v+p$	NC	2 MeV	4.1 10 ³	6.9 10 ³	1.0 104
$\text{V+e} \rightarrow \text{V+e}$	NC	0.4 MeV	840	840	840
$V+^{12}C \rightarrow V+^{12}C^*$ $^{12}C^* \rightarrow ^{12}C + V$	NC	15.11MeV	110	220	380
$\overline{V_e}$ +12C \rightarrow 12B +e ⁺ 12B \rightarrow 12C + e +V _e	СС	14,39 MeV	20	30	45
$v_e^{+12}C \rightarrow {}^{12}N + e$ ${}^{12}N \rightarrow {}^{12}C + e^+ + \overline{v}_e$	СС	17,34 MeV	50	75	100

Diffuse SN Neutrinos

Detection reaction: inverse beta decay

$$\overline{v}_e + p \rightarrow n + e^+$$

- prompt signal from positron annihilation
- delayed 2.2 MeV γ 's from neutron capture (τ ~ 250 μ s)
 - → good distinction from single events
- Observation window: ~10-30 MeV limeted by atm. and reactor neutrinos
- Expected events: 35-70 in 10 years
 - → spectroscopy possible if background under control

Atmospheric and reactor electron anti-neutrinos (both location dependant):

irreducible → define observation window

- Cosmogenic ⁹Li, ⁸He
 - produced by cosmic muons
 - β-n emitter
 - mimick delayed coincidence signal

Reduction technique:

- energy cut, discarding 8He
- combined spatial and time cut suppressing ⁹Li: veto a cylinder of 2 m around muon track for 1 s (>5T_{1/2})
 - → residual ⁹Li rate of ~2% with a negligible dead time of ~ 0.1%

Fast neutrons

- produced in the surrounding rock by undetected cosmic muons
- thermalization + n capture mimick IBD
- Monte Carlo study performed in 2 steps
 - i) simulation of neutron energy and angle in spallation process (muon propagaion in limestone, <E> = 300 GeV @4 km.w.e.)
 - ii) simulation of neutron propagation in the scintillator

Reduction of fast neutrons

- rejection of multiple neutron events (30-40%)
- fiducial volume cut: 0.2 events/yr for 10m
- pulse shape analysis (p recoil vs e-like)
 reduces background to 0.12 evts/yr (with 12m fiducial volume)

- severe background: NC interactions of atmospheric neutrinos
 - knocking out neutron of ¹²C: v + ¹²C → ¹¹C* + n
 - n thermalization + n capture mimick IBD
- background reduction
 - tagging β+ decay of ¹¹C
 - 11 C*: deexcitation via emission of p,n, or $\alpha \rightarrow$ pulse shape analysis
 - Monte Carlo study performed (Genie and G4)
- Small-scale experiments and MC studies indicate that effective reduction can be achieved

Solar Neutrinos

- Neutrino-electron scattering (low threshold)
 - → Good shielding required (≥ 4 km.w.e.)
 - High-statistic spectral observation and flux measurement
 - Search for temporal modulations with ⁷Be
 - \rightarrow 3 σ dicovery potential for amplitudes as low as 0.5 % for frequencies O(10min)- O(100y)
 - Precision test of the v_e survival probability in the transition region
 - Search for v_e → anti-v_e conversion
 - Test of SSM metallicity

Source	Channel	EW [MeV]	$m_{\rm fid}$ [kt]	Rate [cpd]
pp	$\nu e \rightarrow e \nu$	>0.25	30	40
pep		0.8 - 1.4	30	2.8×10^{2}
pep ⁷ Be		>0.25	35	1.0×10^{4}
$^{8}\mathrm{B}$		>2.8	35	79
CNO		0.8 - 1.4	30	1.9×10^{2}
$^{8}\mathrm{B}$	¹³ C	>2.2	35	2.4

Geoneutrinos

- $\bullet \overline{v}_{e}$ produced by U/Th decay chains, Ka
- Detection reaction: inverse beta decay
 ~1000 events per year, location dependant

Goals

- measure abundance of ²³⁸U and ²³²Th inside Earth crust and mantle
- quantify the radiogenic constribution to the total heat flux
- help to understand geophysical processes and origin and formation of Earth
- with a 2nd detector (like Hanohano):
 disentangle oceanic/continental crust
 Within one year error on total y
 flux in few % level

BSE model: @Pyhäsalmi 50 TNU @Fréjus 40 TNU

Background:

- Reactor Neutrinos
- 9Li and 8He: muon-induced ßn-emitter
- Fast neutrons and ¹²C(α,n)¹⁶O:
 each ~10 evts/year (MC)

Geoneutrinos

- After 5 years of measurement: Disentagnlement of contributions from U and Th in Pyhäsalmi
- fixed chondritic U/Th ratio: ±20% with 5 σ

Short-Baseline Neutrino Oscillations

- Neutrino Oscillometry v_e
 - strong EC-source (MCi) close to detector with E = O(100 keV) (⁵¹Cr, ⁵⁷Se)
 - → sterile neutrinos
 - $\rightarrow \theta_{13}, \Delta m_{13}^2$
- Background: solar ⁷Be neutrinos

Nuclide	T _{1/2} (d)	E _v (keV)
⁵¹ Cr	28	747
⁷⁵ Se	120	450

Short-Baseline Neutrino Oscillations

Reactor Neutrinos v_e

- 50-25000 anti $v_{\rm e}$ events per year, depending on detector site
- anti- v_e disappearance experiment
- precision measurement of solar oscillation parameters θ_{12} , Δm_{12}^2
- \rightarrow after 1 y: 3 σ error $\Delta m_{12}^2 < 3\%$

Pion at rest decay

- Search for sterile neutrinos
- Search for θ_{13} , δ_{CP} (compare Daedalus)

DM and OvBB

Indirect Dark Matter Search:

Neutrinos from DM annihilation/decay v_e

- Detection via inverse beta decay
- Regions with high Dark Matter density,
 e.g. in the galactic center
- Assuming MeV DM, $< sv > = 3.10^{-26} \text{ cm}^3 \text{s}^{-1} / t_c \sim 10^{24} \text{ s}$
- Monoenergetic peaks

• 0ν2β with 136Xe

- 136Xe dissolved in the liquid scintillator
- Solubility in liquid scintillator: ~ 2% in weight
 - → potentially 200 tons of active mass or more
- High PMT coverage might be required

Palomares-Ruiz, Pascoli, Phys, Rev. D77, 025025 (2008)

High-Energy Physics

- Proton Decay
- Neutrino beam
- Tracking

Proton Decay

400

- p → K+v (minimal SUSY SU(5)) $K^+ \rightarrow \mu^+ \nu_\mu / \pi^0 \pi^+$
 - coincidence of K/µ provides clear signature
 - efficiency: 65%
 - background: atmospheric v's (creating hadrons)
 - Expected Rates in 10 years
 - current SK limit: 40 events
 - background: 1 event
 - no observation:

 $\tau_{\rm p} > 4 \times 10^{34} \, \text{yrs} \, (90\% \, \text{C.L.})$

- $\mathbf{p} \rightarrow \boldsymbol{\pi}^0 \, \mathbf{e}^+ \, (\text{GUT SU}(5))$
 - Y-shaped shower signature, tracking needed

GeV Event Reconstruction

- Investigated in Monte Carlo simulations
- Identification of energy, momentum and flavour

For tracks > O(10cm) distortion of the spherical light front emerging

from track

Integrated charge distribution

Muons

First hit distribution (TOF corrected)

GeV Event Reconstruction

- Investigated in Monte Carlo simulations
- Identification of energy, momentum and flavour
- For tracks > O(10cm) distortion of the spherical light front emerging from track
- More precise method: LogLikeli Fit to the integrated charge and first hit times of each PMT (7 par fit)

/ resolution [MeV] horizontal events ertical events 1.6 1.4

Energy resolution

Muons

Long-baseline Neutrinos

- Searching for θ_{13} , δ_{CP} , mass hierarchy, and check for maximal θ_{23}
- Options currently investigated
 - Conventional v beam CERN-Pyhäsalmi (2288 km)
 - Appearance experiment: $(\overline{v_{\mu}}) \rightarrow (\overline{v_{e}})$
 - Background due to NC π^0 production, further studies ongoing
 - Beta beam CERN-Fréjus (130 km)
 - discrimination of electron and muon by pulse-shape analysis:
 - → efficieny for muons: ~90%
 - → residual electrons: <1%
- Will be investigated in LAGUNA-LBNO FP7 study

LENA Whitepaper

The next-generation liquid-scintillator neutrino observatory LENA

Michael Wurm, ^{1,2,*} John F. Beacom, ³ Leonid B. Bezrukov, ⁴ Daniel Bick, ² Johannes Blümer, ⁵ Sandhya Choubey, ⁶ Christian Ciemniak, ¹ Davide D'Angelo, ⁷ Basudeb Dasgupta, ³ Amol Dighe, ⁸ Grigorij Domogatsky, ⁴ Steve Dye, ⁹ Sergey Eliseev, ¹⁰ Timo Enqvist, ¹¹ Alexey Erykalov, ¹⁰ Franz von Feilitzsch, ¹ Gianni Fiorentini, ¹² Tobias Fischer, ¹³ Marianne Göger-Neff, ¹ Peter Grabmayr, ¹⁴ Caren Hagner, ² Dominikus Hellgartner, ¹ Johannes Hissa, ¹¹ Shunsaku Horiuchi, ³ Hans-Thomas Janka, ¹⁵ Claude Jaupart, ¹⁶ Josef Jochum, ¹⁴ Tuomo Kalliokoski, ¹⁷ Pasi Kuusiniemi, ¹¹ Tobias Lachenmaier, ¹⁴ Ionel Lazanu, ¹⁸ John G. Learned, ¹⁹ Timo Lewke, ¹ Paolo Lombardi, ⁷ Sebastian Lorenz, ² Bayarto Lubsandorzhiev, ^{4,14} Livia Ludhova, ⁷ Kai Loo, ¹⁷ Jukka Maalampi, ¹⁷ Fabio Mantovani, ¹² Michela Marafini, ²⁰ Jelena Maricic, ²¹ Teresa Marrodán Undagoitia, ²² William F. McDonough, ²³ Lino Miramonti, ⁷ Alessandro Mirizzi, ²⁴ Quirin Meindl, ¹ Olga Mena, ²⁵ Randolph Möllenberg, ¹ Rolf Nahnhauer, ²⁶ Dmitry Nesterenko, ¹⁰ Yuri N. Novikov, ¹⁰ Guido Nuijten, ²⁷ Lothar Oberauer, ¹ Sandip Pakvasa, ²⁸ Sergio Palomares-Ruiz, ²⁹ Marco Pallavicini, ³⁰ Silvia Pascoli, ³¹ Thomas Patzak, ²⁰ Juha Peltoniemi, ³² Walter Potzel, ¹ Tomi Räihä, ¹¹ Georg G. Raffelt, ³³ Gioacchino Ranucci, ⁷ Soebur Razzaque, ³⁴ Kari Rummukainen, ³⁵ Juho Sarkamo, ¹¹ Valerij Sinev, ⁴ Christian Spiering, ²⁶ Achim Stahl, ³⁶ Felicitas Thorne, ¹ Marc Tippmann, ¹ Alessandra Tonazzo, ²⁰ Wladyslaw H. Trzaska, ¹⁷ John D. Vergados, ³⁷ Christopher Wiebusch, ³⁶ and Jürgen Winter ¹

arXiv:1104.5620

97 people from 37 universities and institutes in different 13 countries!

Summary

- Liquid scintillator is a very attractive detection target for a next-generation large-volume neutrino observatory
 - Proven technology: wealth of results from KamLAND and Borexino
 - Broad physics programme: Particle Physics, Astrophysics, Geophysics...
 - Wide energy range: sub-MeV to GeV
- Growing community in the field: LAGUNA, LAGUNA-LBNO, LENA Whitepaper

Thank you for your attention!